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Rhizobia are nitrogen-fixing bacteria that establish a nodule
symbiosis with legumes. Nodule formation depends on signals
and surface determinants produced by both symbiotic partners.
Among them, rhizobial Nops (nodulation outer proteins) play a
crucial symbiotic role in many strain–host combinations. Nops
are defined as proteins secreted via a rhizobial T3SS (type III
secretion system). Functional T3SSs have been characterized in
many rhizobial strains. Nops have been identified using various
genetic, biochemical, proteomic, genomic and experimental
approaches. Certain Nops represent extracellular components of
the T3SS, which are visible in electron micrographs as bacterial
surface appendages called T3 (type III) pili. Other Nops are
T3 effector proteins that can be translocated into plant cells.
Rhizobial T3 effectors manipulate cellular processes in host
cells to suppress plant defence responses against rhizobia and
to promote symbiosis-related processes. Accordingly, mutant
strains deficient in synthesis or secretion of T3 effectors show

reduced symbiotic properties on certain host plants. On the
other hand, direct or indirect recognition of T3 effectors by
plant cells expressing specific R (resistance) proteins can result
in effector triggered defence responses that negatively affect
rhizobial infection. Hence Nops are double-edged swords that
may promote establishment of symbiosis with one legume
(symbiotic factors) and impair symbiotic processes when bacteria
are inoculated on another legume species (asymbiotic factors).
In the present review, we provide an overview of our current
understanding of Nops. We summarize their symbiotic effects,
their biochemical properties and their possible modes of action.
Finally, we discuss future perspectives in the field of T3 effector
research.
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INTRODUCTION

Rhizobia are nitrogen-fixing bacteria that can infect leguminous
host plants, usually by entering via root hairs. As a result, an
infection thread is formed and the bacteria convert atmospheric
nitrogen into ammonia in symbiosomes of formed root nodules.
Nodule formation depends on molecular signals and determinants
produced by both symbiotic partners. Plant roots secrete
flavonoids, which interact with rhizobial NodD proteins to activate
symbiotic genes with a conserved nod box in the promoter
region. Most of these nod (noe, nol) genes encode enzymes
required for synthesis of bacterial nodulation signals, called
Nod factors (lipochito-oligosaccharidic nodulation factors). Host
plants perceive Nod factors by Nod factor receptors (LysM
domain receptor kinases) and initiate nodulation signalling to
express symbiotic genes required for infection and nodule
formation [1]. In addition to Nod factors, nodule formation
may be affected by rhizobial surface carbohydrates such as
exopolysaccharides, lipopolysaccharides, K-antigens and cyclic
β-glucans. These polysaccharides, or oligosaccharides derived
from them, are host-specific symbiotic determinants, i.e. they are
required for nodulation of certain host plants [2]. Host-specific
nodulation may also depend on Nops (nodulation outer proteins)
secreted by the rhizobial T3SS (type III secretion system).
The T3SS of Gram-negative bacteria is a complex multiprotein
secretion apparatus that actively exports proteins through the

lumen of needle-like or tubular structures, the T3 (type III) pili.
T3SSs of pathogenic or symbiotic bacteria possess the capacity
to deliver effector proteins (T3 effectors) directly into eukaryotic
host cells and therefore were also named ‘injectisomes’. We define
Nops as rhizobial proteins that are either extracellular apparatus
components of the T3SS or secreted T3 effectors.

The translocated T3 effectors often target components of
the host immune system to increase bacterial survival and
virulence [3,4]. A function of T3 effectors as bacterial
virulence or avirulence factors has been well documented for
many pathogenic bacteria, including phytopathogens such as
Pseudomonas syringae [5] and Xanthomonas campestris [6]. In
a similar way, rhizobial T3 effectors have been found to play
a role in certain symbiotic interactions between rhizobia and
legumes. On the basis of mutant analysis and identification of
secreted proteins, functional T3SSs have been reported for various
nodule-inducing bacteria belonging to the genera Sinorhizobium
(Ensifer) [7–9], Bradyrhizobium [10–14], Mesorhizobium [15–
17] and Cupriavidus [18]. Furthermore, recent sequencing data
revealed the presence of a T3SS gene cluster in the genome of a
nodule-inducing Burkholderia strain [19]. Thus the presence of
a symbiosis-related T3SS in rhizobia tends to be the rule rather
than the exception, particularly for Bradyrhizobium strains. As in
pathogenic bacteria, rhizobial genes required for synthesis of the
T3SS are clustered in the genome. Their genetic organization and
the corresponding classification of rhizobial T3SSs into different
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system; TIR, Toll/interleukin-1 receptor.
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Figure 1 The rhizobial T3SS

Electron micrographs show T3 pili (surface appendages) produced by S. fredii USDA257 grown in the presence (A) or absence (B) of 1 μM apigenin (the arrow points to a T3 pilus and the arrowhead
to a flagellum). The proposed model of the rhizobial T3SS (C) is based on a recently published T3SS apparatus model [23] and the sequence similarities of indicated rhizobial proteins with T3SS
apparatus proteins from other bacteria [20]. Effector proteins (various Nops) are delivered from the bacterial cytoplasma (bottom) through the lumen of the T3 pilus (composed of the pilus subunit
NopA and the translocon NopX) into the host cytoplasma (top). Protein names according to the unified nomenclature for T3SS proteins using the Sct (SeCreTion) prefix are indicated in parentheses
[20]. Putative pilotins (such as Y4yS [25]) implicated in secretin assembly are not shown. Abbreviations: C ring, cytosolic ring; CW, cell wall; HM, host membrane, IM, inner membrane; MS ring,
membrane and supramembrane ring; OM, outer membrane.

categories have been reviewed recently [20,21]. In the present
review, we provide an overview on Nops, in particular on rhizobial
T3 effectors.

NOPs ARE SECRETED THROUGH THE T3SS APPARATUS IN
RESPONSE TO HOST FLAVONOIDS

Bacterial T3SSs show structural similarities to bacterial flagella,
suggesting neofunctionalization of flagellum proteins for protein
export during evolution [22,23]. Long T3 pili, also known as
surface appendages, can be seen clearly on electron microscopy
pictures of rhizobia cultured in the presence of host flavonoids
[24] (Figures 1A and 1B). The rhizobial T3SS apparatus has been
proposed to be similar to that of pathogenic bacteria. Figure 1(C)
shows a model of the rhizobial T3SS apparatus on the basis of
homology with apparatus proteins of pathogenic bacteria and
the conserved structure of bacterial T3SSs. The pilus subunit
protein NopA, however, does not show amino acid sequence
similarities to pilus proteins from other bacteria. Nevertheless,
NopA possesses predicted secondary-structure characteristics of

pilus subunit proteins in other bacteria [26,27]. T3 effectors are
actively secreted through the lumen of the pilus with the help
of the associated ATPase RhcN. Similarly to T3 effectors of
pathogenic bacteria, rhizobial effector proteins can be translocated
into host cells. For confirmation of translocation into legume
cells, T3 effectors fused to adenylate cyclase were expressed in
rhizobia and cAMP formation was measured in infected roots
or nodule cells. Using this approach, translocation of the T3
effector NopP from Sinorhizobium fredii USDA257 into Vigna
unguiculata roots was demonstrated [28]. Likewise, the NopE1
and NopE2 effectors of Bradyrhizobium japonicum USDA110
were found to be translocated into infected cells of Macroptilium
atropurpureum nodules [29]. The pilus-associated protein NopX,
formerly called NolX, [8,30,31] is a putative translocon protein
related to translocon proteins of phyopathogens such as HrpF of
X. campestris [32] and PopF1/PopF2 of Ralstonia solanacearum
[33]. These translocon proteins mediate translocation of T3
effectors into plant cells by forming a pore in the host membrane
through which effectors can enter [34]. HrpF possesses lipid-
binding activity in vitro and can induce pore formation in
planar lipid bilayers [32]. The model shown in Figure 1(C) also
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implies that rhizobial T3 pili are connected directly to the host
cytoplasma. Alternatively, T3 effectors are first secreted into the
symbiotic interface and later translocated with the help of NopX.
Immunohistochemical localization studies showed that NopX of
S. fredii USDA257 is mainly accumulated in infection threads
[31].

Secretion through the T3SS and subsequent translocation
of effectors depends on the N-terminal region of the effector
proteins. However, the mechanism of substrate recognition by the
T3SS remains largely unknown. Various computational methods
have been established to predict T3SS substrates on the basis
of N-terminal amino acid sequences [35–39]. However, such
algorithms must be treated with caution and require experimental
confirmation. Bioinformatic prediction of T3SS substrates is also
complicated by the possibility that the information required for
secretion may also lie within the mRNA. Frameshift mutations
that completely altered the N-terminal amino acid sequence of
T3 effectors did not prevent their secretion through the T3SS
[40]. Compared with T3 effectors from pathogenic bacteria, Nops
seem to possess certain conserved features. Rhizobial proteins
related to the T3SS could be clearly discriminated from those
of plant pathogenic bacteria when amino acid sequences were
analysed using statistical and machine learning methods [41,42].
Nevertheless, Nops known to be secreted by rhizobial T3SS can
also be secreted through the T3SS of P. syringae [28,43,44],
indicating that N-terminal secretion signals are interchangeable
among symbiotic and pathogenic bacteria.

Expression of most rhizobial T3SS genes usually depends
on TtsI, a transcriptional regulator that controls expression of
various flavonoid-inducible genes including those related to
the T3SS. TtsI-regulated genes possess a promoter with a tts
box, a conserved cis element required for TtsI-dependent gene
expression [10,13,45–47]. For strain S. fredii NGR234, direct
binding of TtsI to the tts box promoter region of two TtsI-regulated
genes has been demonstrated by electrophoretic mobility-shift
and DNase I cleavage protection assays [47]. In Bradyrhizobium
elkanii SEMIA587, but not other strains, TtsI can also up-
regulate its own expression since the ttsI promoter region contains
a functional tts box [13]. Like nod genes required for Nod
factor synthesis, ttsI genes possess a nod box in their promoter.
Accordingly, expression of ttsI (as determined by promoter–lacZ
reporter gene fusion constructs) is strongly induced by flavonoids
in a NodD-dependent manner [10,48,49]. Negative regulation of
ttsI gene expression by the regulatory protein NolR has been also
reported. NolR appears to bind to a specific operator sequence
in the ttsI promoter and thereby interferes with the action of
NodD transcriptional activators [49,50]. As expression of ttsI
usually depends on NodD proteins and specific host flavonoids,
T3 pilus formation (Figures 1A and 1B) and subsequent secretion
of T3 effectors through the T3SS are strongly induced during the
rhizobial infection process.

IDENTIFICATION OF NOPs

Plant flavonoids of host plants are important signals for NodD-
dependent activation of rhizobial nod genes and subsequent Nod
factor production [2]. In the course of these nod gene studies,
flavonoid-responsive promoters were identified by random
insertion of a promoterless galactosidase reporter gene into the
rhizobial genome. Using this method, two flavonoid-induced
genes (host-inducible genes A and B) were identified in S. fredii
USDA201. The mutants obtained showed reduced nodulation
competiveness on soya bean (or soybean, Glycine max) plants,
i.e. were outcompeted by the wild-type strain [51]. Activation

of host-inducible gene B (later named nolJ) by flavonoids was
found to be dependent on a functional nodD1 gene. Nodulation
experiments with the nolJ mutant and soya bean plants resulted in
delayed nodule formation indicating a positive effect of this gene
on symbiosis [52]. Furthermore, a gene of Rhizobium etli strain
CNPAF512 showed sequence similarities to the host-inducible
gene A of USDA201. A corresponding mutant induced delayed
nodule formation on common beans (Phaseolus vulgaris) and
reduced nodulation competitiveness compared with the wild-type
strain [53]. At that time, the scientists reporting these findings
could not know that they had characterized nop genes (encoding
NopP and NopC respectively).

Other genes related to the T3SS were identified in the context of
the phenomenon that certain S. fredii strains nodulate soya bean in
a cultivar-specific manner. It was observed that soya bean cultivar
McCall did not induce nodules when inoculated with S. fredii
USDA257 [54] (Figure 2A), a strain that efficiently nodulates
other soya bean cultivars such as Hardee [59]. Subsequent Tn5
mutagenesis of USDA257 resulted in mutant derivatives that
gained the ability to induce nodules on McCall (Figure 2B).
These findings showed that specific genes in USDA257 blocked
nodulation of McCall [55]. The blockage of nodulation was
found to occur at the stage of infection, as USDA257 induced
on McCall only few aberrant infection threads [60]. Sequencing
of the Tn5-tagged locus in USDA257 and further mutant
analysis resulted in identification of a cluster of rhizobial
genes involved in host-specific nodulation (nolXWBTUV; for
synonymous gene names, see Supplementary Table S1) [61].
A nearly identical locus was later identified in the broad-
host-range strain S. fredii NGR234 [62]. Similarly to nolJ of
USDA201 [52], expression of these genes was found to be
dependent on NodD proteins and flavonoids. When bacteria
were grown in the presence of flavonoids, the NolX (later
renamed NopX) and NolT proteins could be immunologically
detected with raised antibodies [7,30,63]. As specific proteins in
USDA257 and NGR234 were found to accumulate in bacterial
culture supernatants in response to flavonoids [64], it was tested
whether secretion of flavonoid-inducible proteins depends on the
nolXWBTUV locus. This was indeed the case for five extracellular
proteins, called SR (signal-responsive) proteins. [7]. The SR
proteins were later renamed Nops (Table 1). Identification of
T3SSs in pathogenic bacteria and sequencing of corresponding
rhizobial genes (rhc genes) downstream of the nolXWBTUV locus
(accession number L12251.1 for USDA257; accession number
U00090.1 for NGR234) indicated that a rhizobial T3SS is required
for secretion of Nops [30,65]. Similarly to the T3SS-deficient
mutants of USDA257, a T3SS-knockout derivative of NGR234
(mutation in the rhcN ATPase gene) failed to secrete Nops.
N-terminal amino acid sequencing resulted in identification of
two Nops of NGR234, namely the previously identified NolX
(NopX) and NopL (y4xL locus) [8]. In addition to USDA257
and NGR234, functional T3SSs and corresponding Nops were
subsequently characterized in various other rhizobial strains
(Table 1). Most Nops were identified by comparing extracellular
protein profiles of wild-type bacteria with those of mutant
strains with non-functional T3SSs. Alternatively, T3 pili (surface
appendages) were purified from bacterial culture supernatants.
Proteins were subsequently used for microsequencing or mass
spectrometry analysis. Comparisons of extracellular protein
profiles of flavonoid-induced with those of non-induced cultures
also helped to identify Nops as it turned out that expression of nop
genes is tightly regulated by TtsI and NodD proteins. An exception
is B. elkanii USDA61, which secretes Nops independently of
flavonoid inducers [12]. In many cases, T3SS-dependent secretion
of Nops (wild-type compared with T3SS-knockout mutant) was
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Figure 2 Symbiotic phenotypes of nop mutants

The examples shown indicate negative (A–D) and positive (E and F) effects of Nops on the nodule symbiosis. (A) S. fredii USDA257 (wild-type) secreting Nops on soya bean cv. McCall showing
nodulation blockage. (B) USDA257 T3SS-knockout mutant (DH4; rhcU mutant) on soya bean cv. McCall forming normal effective (nitrogen-fixing) nodules [55]. (C) S. fredii NGR234 (wild-type) on
C. juncea inducing mainly ineffective nodules (NopT functions as asymbiotic factor). (D) NGR234 nopT mutant on C. juncea inducing mainly effective nodules [56,57]. (E) Bacteroids of NGR234
(wild-type) in infected cells of mature P. vulgaris cv. Tendergreen nodules (NopL functions as symbiotic factor). (F) Bacteroids of the NGR234 nopL mutant in infected cells of Tendergreen nodules
showing premature senescence (necrotic nodules) [58].

confirmed by immunoblot analysis using a specific antiserum,
either raised against a given protein expressed in Escherichia
coli or against a corresponding synthetic peptide. Using already
available antisera against other Nops, it could be examined
whether Nop secretion is maintained or abolished in a constructed
nop gene mutant. In this way, it was found that the NopB proteins
of USDA257 and NGR2334 are required for a functional T3SS
[68,69], whereas other Nops with putative effector functions are
not essential for T3SS-dependent protein secretion. Examples of
Nops characterized in this way are NopL [56,69,74], NopP [77],
NopT [56,57] and NopM [57] of NGR234. Antisera against Nops
were also extremely useful for biochemical characterization of
purified T3 pili. NopA, NopB and NopX proteins were co-purified
with pili of S. fredii strains [24,26,68,69] and it was later found
that these three proteins interact directly with one another [83].

Certain Nops such as NopT and NopM are similar to T3
effectors of pathogenic bacteria (Table 1). In fact, sequence
comparisons with existing effector gene databases are helpful
when searching for novel nop genes in rhizobial genomes.
Candidate nop genes can also be identified on the basis of
information from whole-genome gene expression data (genes
induced by flavonoids) and location in the T3SS gene clusters
[21]. Moreover, nop gene candidates can be predicted on a whole-
genome scale by identification of tts boxes in promoter regions
[10,16,43–47] and computational prediction of N-terminal T3SS-
specific secretion signal sequences [35–39]. Nop candidate
proteins (or the N-terminal domain containing the putative
secretion signal sequence) fused to C-terminal tags (e.g. GFP
or FLAG tag) can be expressed in wild-type rhizobia and a T3SS-
deficient mutant for further analysis. T3SS-dependent secretion
of such test proteins can then be analysed by fluorescence
microscopy or immunological methods [16,68,72]. By definition,
Nops should be secreted by wild-type bacteria, but not by
a T3SS-knockout mutant. Using this approach, four FLAG-
tagged candidate effectors of Mesorhizobium loti MAFF303099

were found to be secreted via the T3SS [16,72]. Another way
to characterize candidates is to test them in a heterologous
Pseudomonas–Arabidopsis translocation system. A given Nop
candidate fused to �79AvrRpt2 (P. syringae effector AvrRpt2
lacking the N-terminal secretion signal) is expressed in P.
syringae strain PtoDC3000 (or its T3SS-deficient mutant �hrcC
as control). In the case of translocation of the hybrid protein,
infiltrated leaves will induce rapid cell death caused by AvrRpt2
action. Tests performed in this way indicated translocation for
most previously identified Nops (Table 1). In addition, many
novel proteins from various rhizobial strains were found and
designated as Nops [43,44]. In our opinion, such classification
is somehow too early as secretion of these proteins through a
rhizobial T3SS was not tested. In the present review, we excluded
all Nops from Table 1 that were only tested in the heterologous
Pseudomonas–Arabidopsis translocation system and instead list
them separately in Supplementary Table S1. Future work is
required to confirm whether these proteins are bona fide Nops
secreted via a rhizobial T3SS. Remarkably, NopB, a pilus-
associated Nop required for translocation of other rhizobial Nops
[68,69], was found to be a translocated effector according to the
Pseudomonas–Arabidopsis translocation system. Surprisingly,
the predicted apparatus proteins NolU, NolV, y4yQ, y4yJ and
NolT (Figure 1C) were found to be translocated in a similar way
and designated as Nops [43]. Nop translocation results obtained
from heterologous translocation systems should therefore be
interpreted with caution, and future experiments are required to
clarify these discrepancies.

SYMBIOTIC PHENOTYPES OF nop GENE MUTANTS

Construction of a T3SS-knockout mutant (genes encoding T3SS
apparatus proteins, nopA, nopB or the regulatory gene ttsI)
followed by nodulation tests on leguminous host and non-
host plants was frequently conducted to elucidate the symbiotic
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Table 1 Identification of Nops by various methods: overview of bona fide Nops

Protein names (or identification numbers) of synonymous or related proteins are indicated in parentheses. Strain names: Sinorhizobium (Rhizobium, Ensifer) fredii NGR234, USDA207, USDA257,
USDA191 and HH103; Bradyrhizobium japonicum (Bradyrhizobium diazoefficiens) USDA6, USDA110, USDA122, USDA123 and USDA124; Bradyrhizobium elkanii USDA61 and SEMIA587;
Mesorhizobium loti MAFF303099. The following protein detection methods were used. Im, immunodetection: protein (or the N-terminal part of the protein with a C-terminal tag) immunodetected
in the supernatant of wild-type bacteria, but not in the supernatant of a mutant strain deficient in Nop secretion. Alternatively, proteins from wild-type bacteria grown with and without flavonoids
were compared. Ma, mass spectrometry: protein identified by comparative 2D gel electrophoresis followed by mass spectrometry analysis using culture supernatants from wild-type bacteria and
from a mutant strain deficient in Nop secretion. Alternatively, purification of flavonoid-induced pili followed by mass spectrometry was performed (USDA257, USDA191) [67]. Cy, adenylate cyclase
translocation reporter systems with Nop–Cya fusion proteins: translocation by rhizobial T3SS into legume cells confirmed for NopP (USDA257), NopE1 and NopE2 (USDA110); NopL (USDA257) and
NopP (USDA257) were translocated into N. benthamiana leaf cells via the T3SS of P. syringae pv. tomato DC3000 [28,29]. Tr, translocation analysis performed using P. syringae pv. tomato DC3000
expressing Nop candidates fused to the �79AvrRpt2 reporter and Arabidopsis leaves. Nop fusion proteins causing cell death were considered to be translocated [43,44]. At least one candidate of the
rhizobial strains listed was tested. Mi, microsequencing: N-terminal amino acid sequencing of differently expressed proteins of culture supernatants (wild-type compared with NGR�rhcN mutant)
[8]. Ra, radioactively labelled protein detected in culture supernatant. Ph, protein identified by phage display [77].

Protein names Strains Proposed function Methods Related proteins References

NopA (SR5, Nop7) NGR234 Pilus subunit Im, Ma,
Ra

Rhizobial homologous [7,9,12,13,16,24,26,49,66,67]
USDA257
USDA191
HH103
USDA61
SEMIA587
MAFF303099

NopB (NolB, SR4; blr1812;
mlr8763)

NGR234
USDA207
USDA257
USDA191
USDA110
USDA61
MAFF303099

Pilus component
and/or effector

Im, Ma,
Ra, Tr

Rhizobial homologous; C-terminal domain related to the
flagellar protein FlgK; weak similarities to DNA
polymerase III subunits γ and τ (PRK07994)

[7,12,17,43,44,66–70]

NopC (NolJ; host-inducible
protein B)

NGR234
HH103
USDA6
USDA207
USDA257
USDA191

Pilus component
and/or effector

Im, Ma,
Tr

Rhizobial homologous [26,43,67,71]

NopD (SFHH103_04358;
NopBG, mlr6316)

HH103
MAFF303099

Effector Ma, Im,
Tr

Repeat-rich effector proteins with a C-terminal C48
(SUMO) peptidase domain (XopD T3 effector family)

[44,71,72]

NopE (NopE1, blr1806;
NopE2, blr1649)

USDA6
USDA110
USDA122
USDA123
USDA124

Effector Ma, Cy,
Tr

Proteins with DUF1521 domains (including a putative T3
effector in Vibrio coralliilyticus) [73]

[11,14,29,43,70]

NopF (NopAG, bll1862 or
bll8201)

USDA6
USDA110
USDA122
USDA123
USDA124

Effector Ma, Tr Proteins with putative acetyltransferase domain
(PRK10562); HopBG T3 effector family (e.g. HopBG1,
ADQ74901 of P. syringae pv. maculicola)

[11,14,43,70]

NopJ (y4lO) NGR234 Effector Tr YopJ family T3 effectors with serine/threonine
acetyltransferase or protease domain (pfam03421)

[43,57]

NopL (y4xL; SR2, Nop38) NGR234
USDA207
USDA257
USDA191
USDA61
HH103
SEMIA587

Effector Im, Ma,
Mi,
Ra,
Cy, Tr

Rhizobial homologous; weakly similar to DNA
polymerase III subunits γ and τ domain (PRK07764)

[7,8,12,13,24,28,43,66,67,71,74]

NopM (y4fR, blr1676) NGR234
HH103
USDA110
USDA122
USDA124

Effector Im, Ma,
Tr

IpaH (SlrP) family T3 effectors with NEL (novel E3 ligase)
domain and N-terminal leucine-rich repeat (LRR 8)
domain (pfam13855)

[14,43,57,71,75]

NopP (y4yP, SR3, Nop34,
blr1752; host-inducible
protein A)

NGR234
USDA207
USDA257
HH103
USDA110
USDA61

Effector Im, Ma,
Ra,
Ph,
Cy, Tr

Rhizobial homologous (including the NopAH candidate);
similar to a protein (ACQ68626) of Hamiltonella
defensa, a bacterial endosymbiont of aphids [76]

[7,11,12,28,43,67,70,71,77–
79]

NopT (y4zC, NopT1,
Blr2140)

NGR234
USDA110

Effector Im, Ma YopT T3 effector family; proteins with cysteine protease
domain (TIGR01586; peptidase C58 domain,
pfam03543)

[56,57,70]
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Table 1 Continued

Protein names Strains Proposed function Methods Related proteins References

NopX (SR1, NolX, SR1;
mll6337)

NGR234
USDA207
USDA257
USDA191
USDA61
HH103
MAFF303099

Translocon protein
or effector

Im, Ma,
Mi,
Ra, Tr

Proteins with NolX domain (pfam05819); related to
translocon proteins such as HrpF of X. campestris [32]

[7,8,12,16,17,24,30,31,43,44,62,
63,67,71,74]

NopAA (GunA2, blr1656) USDA207
USDA257
USDA6
USDA110
USDA122
USDA123
USDA124

Effector Ma, Tr Glycoside hydrolase family 12 proteins (pfam01670) [11,14,43,70,80]

NopAC (Pgl, blr1993) USDA6
USDA110
USDA122
USDA124

Effector Ma, Tr Polygalacturonases (glycoside hydrolase family 28,
pfam00295)

[43,70,80]

NopAR (bll1840, ORF17) USDA110
USDA122

Effector Ma, Tr Rhizobial homologous [14,43]

NopBX (mlr6361) and NopBV
(mlr6331)

MAFF303099 Effector Im, Tr Proteins with shikimate kinase domain (pfam01202);
proteins with conserved multidomain region
PRK09196 such as XopAD of X. campestris and
Skwp2 of R. solanacearum (Hpx30 effector family with
SKWP repeat) [81]

[16,17,44,72]

NopBW (mlr6358) MAFF303099 Effector Im, Tr C-terminal domain of NopBW is related to T3 effectors
such as XopP of X. oryzae [82]; N-terminal domain of
NopBW is similar to NopBV (mlr6361)

[16,44]

role of the whole T3 effector arsenal of a given strain.
In most cases, specific legume species were identified that
nodulated either better or worse with such T3SS knockouts.
It was also observed that various mutant strains showed
altered competiveness in co-inoculation experiments with the
parent strain. Symbiotic phenotypes of T3SS-knockout mutants
have been described in detail for various strains, namely S.
fredii (NGR234 [8,26,45,69,74], HH103 [9,49] and USDA257
[24,27,61,68]), B. japonicum (USDA110 [10] and USDA122
[14]), B. elkanii (USDA61 [12,84] and SEMIA58 [13]), M.
loti (MAFF303099 [15,17,72]) and Cupriavidus taiwanensis
(LMG19424 [18]). Analysis of S. fredii strains mutated in
the translocon gene nopX resulted in symbiotic phenotypes
that were similar to those of the T3SS-knockout mutants,
providing clues to the role of NopX in effector translocation
[30,74].

When single T3 effector genes were mutated in rhizobial
strains, positive, negative or no effects on symbiosis were
observed (Figures 2C–2F). Altered symbiotic phenotypes that
can be attributed to the lack of a specific T3 effector have
been reported for nopL [58,74], nopM [57,75] and nopT [56,57]
of S. fredii NGR234, as well as for nopBG (mlr6316) and
nopBX (mlr6361) of M. loti MAFF303099 [15–17,72]. Symbiotic
phenotypes were also observed for nopP mutants of various S.
fredii strains [51,77–79] as well as for Rhizobium etli CNPAP512
[53]. In other cases, however, no or only minor effects on
symbiosis were observed when strains lacking a single effector
gene were tested in nodulation experiments. Examples for such
effector genes are nopJ of NGR234 [57], nopBV (mlr6331)
and nopBW (mlr6358) of M. loti MAFF303099 [17,72], as
well as nopAA (gunA2), nopAC (pgl), nopAD (pme), nopE1
and nopE2 of B. japonicum USDA110 [29,80]. This prompted
researchers to mutate further already constructed T3 effector

gene mutants. Accordingly, cumulative or synergistic effects were
observed in certain double or triple mutants [29,56,57,72,78].
The double mutant nopE1/nopE2 of USDA110, for example,
showed increased nodulation with Vigna radiata cv. KPS2
and reduced nodule number with soya bean (cv. Amphor)
and Macroptilium atropurpureum [29]. Likewise, evidence for
symbiotic or asymbiotic effects of nopBG, nopBV and nopBW
in MAFF303099 was obtained by comparing the nodulation
competitiveness of various mutants on Lotus japonicus and Lotus
tenuis. Test plants were co-inoculated with two strains in equal
amounts and nodule occupancy (percentage of nodules induced
by each strain) was determined at the time of harvest [72].

FUNCTION OF T3 EFFECTORS

Rhizobia appear to express most Nops at early symbiotic stages
(infection thread formation), and also in fully developed nodules
[27,31,46,58,62,85]. As in plant–pathogen interactions, symbiotic
effects of rhizobial Nops are considered to be due to T3 effectors
translocated into host cells. However, before translocation, certain
Nops are likely to be first secreted into the symbiotic interface
and thus may come into direct contact with cell wall materials in
infection threads and the surface of the host plasma membrane.
In fact, some Nops (or Nop candidates) are putative cell-wall-
degrading proteins that could facilitate effector translocation
into host cells [34]. In B. japonicum USDA110, for example,
nopAA (gunA2) encodes a glycoside hydrolase family 12 enzyme
(protein with putative endoglucanase, xyloglucan hydrolase, β-
1,3-1,4-glucanase or xyloglucan endotransglycosylase activity).
When expressed in E. coli, recombinant NopAA protein
efficiently cleaved carboxymethylcellulose [80]. The nopAC (pgl)
and nopAD (pme) genes of USDA110 encode proteins with
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predicted polygalacturonase (glycoside hydrolase family 28) and
pectin esterase activity respectively. However, the triple mutant
nopAA/nopAC/nopAD showed no obvious nodulation phenotype
on test plants [80]. This might be due to the fact that plant-cell-
wall-cleaving enzymes related to symbiosis may be secreted by
other bacterial protein-secretion systems [86]. Moreover, proteins
involved in infection-related cell wall modifications are also
produced by host plants. In L. japonicus, for example, a pectate
lyase is essential for infection by M. loti [87].

Compared with T3 effectors of pathogenic bacteria, little is
known about the function of rhizobial T3 effectors delivered
into plant cells. Besides identification (Table 1), mutant
characterization (see above) and translocation into plant cells
[28,29,43,44], only five rhizobial T3 effector proteins have been
biochemically characterized in detail, namely NopE1/NopE2 (B.
japonicum USDA110), NopL (S. fredii NGR234), NopM (S. fredii
NGR234), NopP (S. fredii NGR234) and NopT (S. fredii NGR234;
B. japonicum USDA110).

NopE

The NopE proteins are typical bradyrhizobial effectors. The
proteins NopE1 and NopE2 of B. japonicum USDA110 have
been characterized in two publications [29,88]. Both proteins
possess two C-terminal DUF1521 domains. DUF1521 contains
an EF-hand-like motif required for calcium binding. Remarkably,
non-enzymatic autoproteolysis of DUF1521 was observed in the
presence of Ca2 + ions, whereas other divalent cations showed
no effects. Except for EDTA, none of the protease inhibitors
tested blocked proteolysis. Each DUF1521 domain contains the
cleavage site GD-PHVDA. The substitution of the aspartate and
proline residues next to the cleavage site by alanine resulted in a
non-cleavable DUF1521 domain. Truncated DUF1521 domain
constructs were not cleaved, indicating that a domain length
of ∼140 amino acids in length is required for self-cleavage.
Nodulation tests with a nopE1/nopE2 double mutant expressing
a non-cleavable NopE1 form and the host plant Vigna radiata
(KPS2) revealed that autocleavage of the protein is required for
effector activity in this plant [29,88].

NopL

Construction of transgenic plants expressing a given nop gene
is an approach to test effector function within plant cells. When
tobacco (Nicotiana tabacum) and L. japonicus plants expressing
the nopL gene of S. fredii NGR234 were tested in this way,
expression of pathogen-related proteins (class I chitinase and
class I glucanase) was reduced compared with control plants.
These findings indicate that NopL can suppress the plant’s innate
immunity [89] and are thus consistent with the observation that a
nopL-knockout mutant of NGR234 (strain NGR�nopL) induces
fewer nodules on the legume Flemingia congesta [74]. Mutant
analysis also revealed a positive effect of NopL in nodules of
certain bean cultivars (e.g. P. vulgaris cv. Tendergreen). Nodules
induced by the nopL mutant turn necrotic, and bacteroids of
the nopL mutant show typical senescence symptoms, indicating
that NopL suppresses premature nodule senescence in these bean
plants (Figures 2E and 2F) [58]. Work with recombinant NopL
revealed that NopL can be phosphorylated in vitro by crude plant
protein extracts. The addition of the MAPKK (mitogen-activated
protein kinase kinase) inhibitor PD98059 to the reaction mixture
resulted in reduced phosphorylation of NopL, providing the
first clues that NopL phosphorylation is associated with MAPK
(mitogen-activated protein kinase) signalling in eukaryotic cells

[90]. Further analysis showed that NopL expressed in tobacco
or yeast (Saccharomyces cerevisiae) is indeed phosphorylated
in vivo and four phosphoserine residues in NopL were identified
by mass spectrometry [58]. The phosphorylation sites in NopL
possess a conserved serine-proline motif, which is typical
for phosphorylation sites in MAPK substrates. Remarkably,
NopL expressed in eukaryotic cells impaired the induction of
MAP-mediated responses such as mating pheromone (α-factor)
signalling in yeast and MAPK (SIPKDD)-mediated cell death in
tobacco. Hence it was concluded that NopL suppresses plant
defence reactions by interfering with MAPK signalling [58].
Recent work confirmed that NopL is indeed a MAPK substrate
(Ge, Y.-Y., Xiang, Q.-W., Wagner, C., Xie, Z.-P. and Staehelin,
C., unpublished data).

NopM

The NopM effectors belong to the NEL (novel E3 ubiquitin ligase)
domain effector family and possess an N-terminal LRR (leucine-
rich repeat) and a C-terminal E3 ubiquitin ligase domain. The
first NEL domain effector described is the IpaH9.8 protein of the
human pathogen Shigella flexneri [91]. E3 ubiquitin ligases in
eukaryotic cells facilitate the covalent conjugation of ubiquitin
from an ubiquitin-loaded E2 to one or more lysine residues in a
given protein substrate. Bacterial E3 ubiquitin ligases delivered
into host cells mimic the activities of host E3 ubiquitin ligases and
ubiquitinate specific target proteins. NopM of S. fredii NGR234
was characterized in detail [75]. Using recombinant protein
and proteins required for an in vitro ubiquitination reaction,
E3 ubiquitin ligase activity of NopM was demonstrated. The
reaction resulted in formation of polyubiquitination chains in
the range 24–200 kDa. When the catalytic residue Cys338 in the
NEL domain of NopM was replaced by alanine, a dysfunctional
protein lacking activity was obtained. In contrast with the NopM-
expressing parent strain NGR234, a mutant producing NopM with
the C338A substitution induced fewer nodules on the host plant
Lablab purpureus, indicating that ubiquitination of an unknown
target protein is required for optimal nodulation. NopM directly
expressed in the non-host Nicotiana benthamiana dampened
generation of ROS (reactive oxygen species), which are formed
in response to the elicitor peptide flagellin (a component of the
bacterial flagellum) [75]. These findings point to the possibility
that NopM promotes nodule initiation of host plants [57,75] by
reducing the levels of harmful ROS during the rhizobial infection
process.

NopP

Protein kinase assays performed with the microsomal fraction
of various host legumes demonstrated that NopP of S.
fredii NGR234 can be phosphorylated in vitro by plant
protein kinases. A truncated NopP form consisting of only
62 N-terminal amino acid residues was also phosphorylated,
indicating that the secretion signal sequence of NopP
contains phosphorylation sites. The phosphorylation reaction
was inhibited by the protein kinase inhibitors genistein
(a tyrosine kinase inhibitor) and K252a (a serine/threonine kinase
inhibitor) [78]. Whether NopP is also phosphorylated in planta
and whether NopP phosphorylation is required for effector activity
remains unknown. During the infection process, NopP probably
interferes with activation of plant defence reactions as nodulation
tests with NGR234 mutants and certain host plants revealed
synergistic effects for NopP and NopL [78]. However, when a
nopP mutant of S. fredii HH103 was inoculated on soya bean (cv.
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Williams), roots showed slightly enhanced nodule formation and
lower transcript levels of the defence gene PR1 (assumed to be
a marker for systemic acquired resistance) than with the parent
strain, indicating that NopP has a negative effect on symbiosis
with this host plant [79].

NopT

The NopT effectors belong to the YopT effector proteinase
family that includes AvrPphB of the pathogen P. syringae (pv.
phaseolicola). These proteins are cysteine proteinases (family
C58 in the CA clan of the MEROPS peptidase database) that
contain three well-conserved catalytic amino acid residues
(catalytic triad). Recombinant NopT proteins of S. fredii NGR234
or B. japonicum USDA110 (NopT1 and NopT2) expressed in
E. coli possess autoproteolytic activity and recognize a DKM
motif in the N-terminal region of the protein [56,57,92]. For
the two NopT proteins of USDA110, proteolytic activity was
also demonstrated with resorufin-labelled casein as substrate
[92]. Substitution of amino acids of the catalytic triad in
NopT proteins dramatically reduced the proteolytic activity
[56,57,92]. Accordingly, symbiotic activity of NopT (e.g. negative
effects on Crotalaria juncea) was abolished in a mutant of
NGR234 producing NopT with a D220A substitution [57].
The autoproteolytically processed NopT forms lack the N-
terminal secretion signal sequence and possess an N-terminus
with glycine and cysteine residues, which represent potential
myristoylation and palmitoylation sites respectively [56,92,93].
For NopT of NGR234, effector lipidation was demonstrated
for in vitro-transcribed protein and for the protein expressed in
yeast [93]. Effector lipidation in plant cells appears to influence
the subcellular localization of NopT. When NopT of NGR234
with a C-terminal fluorescence tag was expressed in Chinese
cabbage (Brassica campestris subsp. napus), the protein was
found to be localized to the plasma membrane. In contrast, a
NopT protein form lacking the myristoylation and palmitoylation
sites (G50A/C51A/C52A substitutions) expressed in the same
plant accumulated in the cytosol [93]. NopT of NGR234 [56]
and NopT1 of USDA110 [92] expressed in tobacco both induced
an apoptosis-like cell death (hypersensitive reaction) that can be
considered as rapid plant defence response. Analysis of NopT
forms with substituted amino acids indicated that induction of cell
death depends on autocleavage and subsequent palmitoylation of
NopT, whereas an intact myristoylation motif is apparently not
essential [56,92].

EFFECTOR-TRIGGERED PLANT RESPONSES: NOPS ARE
DOUBLE-EDGED SWORDS

Rhizobial Nops possess traits that resemble those from pathogenic
bacteria. Once delivered to host cells, most rhizobial Nops
probably manipulate cellular processes to suppress defence
responses against invading bacteria. As mentioned above, NopL
of S. fredii NGR234 is the prototype of such a toxin-like T3
effector [58,89]. Increasing evidence is provided that suppression
of plant defence responses has a positive effect on establishment
and maintenance of symbiosis [94]. Accordingly, compared with
the parent strain S. fredii HH103, reduced nodule formation of
soya bean (cv. Williams) and a higher induction of the defence
gene PR1 were observed in response to inoculation with a T3SS-
deficient mutant lacking secretion of Nops [9,79].

Other Nops perhaps promote symbiosis-related processes
directly by interfering with nodulation signalling in host cells,
which is initiated by perception of rhizobial Nod factors.

Support for such a mechanism was obtained from the interaction
between B. elkanii strain USDA61 and soya bean genotypes
(Clark-rj1; En1282) that are deficient in a Nod factor receptor
gene (GmNFR1α) [95]. In this system, occasional rhizobial
infections do not depend on activation of nodulation signalling
by Nod factors [84]. However, nodule formation with a T3SS-
knockout mutant of USDA61 is nearly abolished, indicating
that Nod-factor-independent nodule formation only occurs as
long the bacteria deliver T3 effectors into the host plant
[12,84]. Comparative microarray analysis showed that the parent
strain USDA61, but not the T3SS-knockout mutant, stimulated
nodulation signalling as analysed by transcript levels of marker
genes such as NIN (nodule inception protein) [84]. These findings
suggest that at least one T3 effector of USDA61 manipulates
the host cell to activate nodulation signalling in the absence
of Nod factors. One possibility would be that a T3 effector
causes cellular changes that increase levels of the plant hormone
cytokinin. In fact, cytokinin applied to L. japonicus roots can
trigger expression of NIN in the absence of Nod factors [96]. Such
a mechanism would be reminiscent of the T3 effector HopQ1 of P.
syringae pv. tomato, which is able to induce cytokinin signalling
in Arabidopsis thaliana [97].

Nops are double-edged swords that may promote establishment
of symbiosis with one legume (symbiotic factors) and impair
symbiotic processes with another legume species (asymbiotic
factors). Direct or indirect recognition of Nops by plant cells can
result in plant defence reactions that negatively affect rhizobial
infection and nodule formation. Such plant defence responses are
likely to be similar to the phenomenon of ETI (effector-triggered
immunity) in plant–pathogen interactions [98]. The cell-death-
inducing effects of NopT in tobacco plants [56,92], for example,
appear to be identical with those caused by a NopT homologue,
the avirulence protein AvrPphB of P. syringae pv. phaseolicola
[99]. Likewise, negative effects of NopT of NGR234 in nodules
of the host plant C. juncea [56,57] are likely to be due to an
ETI-like defence response culminating in necrotic nodule cells
(Figures 2C and 2D).

Negative effects of Nops can result in complete blockage of
nodulation in certain strain–plant combinations. In soya bean,
certain dominant Rj genes (Rj2/Rfg1 and Rj4) can play a crucial
role in Nop-related nodulation blockage. The allelic genes Rj2
and Rfg1 have been identified by positional cloning [100], taking
advantage of the sequenced soya bean genome and various
previous studies [101]. Soya bean cultivars with the Rj2 genotype
(e.g. Hardee) show nodulation blockage with B. japonicum strains
such as USDA122 [102], whereas those with the Rfg1 genotype
[103], such as McCall, are incompatible with certain S. fredii
strains, namely USDA257 (Figure 2A). The gene products of
Rj2 and Rfg1 are R (resistance) proteins belonging to the TIR
(Toll/interleukin-1 receptor)-NBS (nucleotide-binding site)-LRR
class. Three allele types, namely Rj2 (rfg1), rj2 (rfg1) and rj2
(Rfg1) with corresponding amino acid polymorphisms have been
identified [100]. Nodulation tests with T3SS-knockout mutants of
USDA257 [100] and USDA122 [14] confirmed the involvement
of Nops as asymbiotic factors. The loss of the T3SS resulted in
compatible interactions, i.e. nitrogen-fixing nodules were formed.
These data indicate that incompatible rhizobial strains fail to infect
soya beans depending on distinct amino acids in the Rj2/Rfg1
protein [100]. It likely that an as yet unknown T3 effector is
directly or indirectly perceived by a specific Rj2/Rfg1 protein
variant. Such a recognition process would then culminate in an R-
protein-mediated defence reaction (ETI), which blocks bacterial
infection and nodule formation.

Another dominant soya bean gene involved in genotypic
nodulation is Rj4 [101]. Soya beans with the Rj4 genotype
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(e.g. cv. Hill) show T3SS-dependent nodulation blockage with
B. elkanii USDA61 [12]. A T3SS-knockout mutant of USDA61
could overcome the nodulation blockage in cv. Hill, suggesting
the presence of an asymbiotic T3 effector in the wild-type strain.
Identification of a candidate gene encoding such a T3 effector
was recently announced for strain B. japonicum Is-34, which
is also incompatible with Rj4 soya beans [104]. A detailed
characterization of this NopD/NopBG-related gene has not yet
been published. Positional cloning efforts resulted recently in the
identification of the Rj4 gene. Surprisingly, Rj4 does not encode an
R protein but a thaumatin-like protein [105,106]. Thaumatin-like
proteins can be considered as PR (pathogen-related) proteins (PR
protein family 5). Purified proteins often possess antimicrobial
activity, particularly when tested on fungi. Remarkably, some
of them bind to other proteins (enzyme inhibitors) or may
possess enzymatic activity (β-1,3 glucanase) [107]. Identification
of the Rj4 gene now forms the basis to elucidate the molecular
mechanisms of the Rj4 protein in nodulation blockage.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Results from various laboratories working on different rhizobial
strains highlight the symbiotic role of Nops in various strain–
host plant interactions. Beyond Nops, proteins secreted by
other bacterial protein secretions may also represent symbiotic
determinants in certain interactions and should be explored in
future. For example, rhizobial proteins secreted by the bacterial
type VI protein secretion system of Rhizobium leguminosarum
strain RBL5523 may function as asymbiotic factors in the
interaction with Pisum sativum [108]. Likewise, mutant analysis
indicated that type IV effectors secreted by the type IV protein
secretion system of M. loti strain R7A promote nodule formation
on the host Lotus corniculatus but negatively affect establishment
of symbiosis with Leucaena leucocephala [15].

Conclusions on Nops and their dilemma as to function either
as symbiotic or asymbiotic factors were mainly drawn from
inoculation tests with mutant strains. On the protein level,
however, characterization of Nops remains in its infancy. Further
research on Nops and Nop candidates is needed to investigate their
structural and biochemical properties. Future efforts are required
to elucidate the molecular function of rhizobial effectors within
host cells. Identification of plant proteins that are either targets
of symbiosis-promoting effectors or components of the defence
system against asymbiotic effectors will be of particular interest.
Special attention should be paid to the possibility that effector
activities in plant cells may depend on subcellular localization
and post-translational events such as cleavage (NopT and NopE),
phosphorylation (NopL and NopP) and lipidation (NopT). Finally,
further characterization of effectors in plant cells could inspire
medical researchers to test the possible pharmaceutical potential
of Nops in human cells.
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