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Abstract Sulfur is an essential plant nutrient and is

metabolized into the sulfur-containing amino acids (cys-

teine and methionine) and into molecules that protect

plants against oxidative and environmental stresses.

Although studies of thiol metabolism in the model plant

Arabidopsis thaliana (thale cress) have expanded our

understanding of these dynamic processes, our knowledge

of how sulfur is assimilated and metabolized in crop plants,

such as soybean (Glycine max), remains limited in com-

parison. Soybean is a major crop used worldwide for food

and animal feed. Although soybeans are protein-rich, they

do not contain high levels of the sulfur-containing amino

acids, cysteine and methionine. Ultimately, unraveling the

fundamental steps and regulation of thiol metabolism in

soybean is important for optimizing crop yield and quality.

Here we review the pathways from sulfur uptake to glu-

tathione and homoglutathione synthesis in soybean, the

potential biotechnology benefits of understanding and

modifying these pathways, and how information from the

soybean genome may guide the next steps in exploring this

biochemical system.
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Overview

Amino acid metabolism in plants not only provides basic

metabolic building blocks for small molecules and pro-

teins, but also is a critical determinant of both the nutri-

tional composition of plants and the value of crops for food

and feed purposes (Jez and Fukagawa 2008). For normal

plant growth, sulfur, along with nitrogen, phosphorus, and

potassium, is an essential nutrient. Moreover, metabolism

of sulfur into thiol-containing compounds is critical for

protecting plants from oxidative and environmental stres-

ses. Studies in the model plant Arabidopsis thaliana (thale

cress) provide significant insights on the biochemical

processes and regulation of thiol metabolism (Bick and

Leustek 1998; Leustek et al. 2000; Saito 2000; Rausch

and Wachter 2005; Kopriva 2006; Meyer 2008; Höfgen

and Hesse 2008; Kopriva et al. 2009; Yi et al. 2010);

however, the depth of understanding these same pathways

in various crop plants is somewhat limited. Progress toward

unraveling thiol metabolism in major crops like soybean

(Glycine max), corn (Zea mays), wheat (Triticum

aestivum), potato (Solanum tuberosum), and rice (Oryza

sativa) is important for optimizing crop yield and quality.

Here, we review the details of thiol metabolism in soybean,

its potential biotechnology value, what is known about the

pathways from sulfur uptake to glutathione synthesis in

soybean, how the soybean genome is providing new insight
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on these metabolic pathways, and what are the possible

next steps in exploring this biochemical system.

Why focus on sulfur, cysteine, and homoglutathione

in soybean?

A majority of cultivated crops produce seeds that are

deficient, with respect to monogastric diets and rations, in

one or more of the essential amino acids. In general, cereals

are deficient in lysine, tryptophan, and threonine, while

legumes contain inadequate amounts of methionine and

cysteine (Shewry et al. 1995). The relative concentration of

these essential amino acids in food and feed influences

their nutritional and economic value because monogastric

animals, including humans, cannot synthesize these

essential amino acids. Consequently, to provide adequate

sulfur amino acid levels, supplementation of animal feeds

by addition of synthetic amino acids is required to promote

optimal growth and development.

Soybean is an economically important legume with an

estimated 2008 US crop value of $27.3 billion (http://

www.soystats.com/2009/Default-frames.htm). It is the

second most important cash crop in the US, next only to

corn. In many food products, soy is a key ingredient. The

two most important components of soybean are oil and

protein. On average, soybeans contain 18% oil and 38%

protein by weight. As a major source of vegetable oil, they

account for 56% of world oil production. Because of their

high protein content, soybeans are extensively used as a

major ingredient in livestock feed with the majority of

soybean meal produced in the US providing an amino acid

and protein source in feed for poultry, pork, cattle, and

other farm animals. In addition, an increasing amount of

soybean meal is being used in fish food, a trend that is

expected to increase in the future due to the scarcity and

increasing cost of the currently used fish meal (http://www.

soyaqua.org/researchtech.html).

Although soybeans already play a dominant role in the

animal feed industry, improving its amino acid content

would increase its nutritional value (Kerley and Allee

2003). Soybeans are an excellent source of high-quality

protein, but the overall content of methionine and cysteine

in soybean seed protein is not optimal for formulation of

poultry or swine rations. To overcome this problem the

animal industry supplements the soybean-based rations

with synthetic methionine, a process that significantly adds

to cost of the animal feed (Imsande 2001).

Concerted efforts using both traditional breeding and

genetic engineering aim to increase sulfur-containing

amino acid levels in soybean (Krishnan 2005, 2008).

Mutagenesis and breeding yields soybean with modest

increases in methionine and cysteine content (Imsande

2001; Panthee et al. 2006). Genetic engineering approaches

to change amino acid content in soybean have used the

expression of methionine-rich heterologous proteins, the

expression of synthetic proteins containing a high per-

centage of sulfur-containing amino acids, or the expression

of endogenous methionine-rich proteins (Townsend and

Thomas 1994; Dinkins et al. 2001; Kim and Krishnan

2004; Li et al. 2005; Livingstone et al. 2007; Krishnan

2008). For example, expression of the 2S albumin from

Brazil nut increased sulfur-amino acid content by accu-

mulation of the heterologous protein, but at the expense of

endogenous sulfur-rich proteins (Streit et al. 2001). This

suggests that sulfur assimilation and cysteine biosynthesis

do not supply sufficient metabolites in the engineered seeds

to enhance sulfur-containing amino acid content.

Several studies demonstrate the influence of sulfur

nutrient availability on soybean protein quality (Holowach

et al. 1984; Gayler and Sykes 1985; Sexton et al. 1998;

Kim et al. 1999). Ample supply of reduced sulfur during

seed filling promotes soybean protein quality by reducing

the accumulation of sulfur-poor 7S b-conglycinins (Gayler

and Sykes 1985; Sexton et al. 1998). Likewise, providing

an exogenous source of methionine to soybean plants

results in 23 and 31% increases in methionine and cysteine

content, respectively (Grabau et al. 1986). This observation

suggests if one could increase the concentration of cys-

teine/methionine in developing seeds, then it should be

feasible to accumulate sulfur-rich heterologous proteins to

a level sufficient to meet the nutritional requirement of

livestock and poultry (Jez and Krishnan 2009).

The general pathways of thiol metabolism in plants

begin with a series of enzymatic reactions that reduce

sulfate to sulfide, which then combines with O-acetylserine

to yield cysteine (Fig. 1). Even though sulfur reduction and

cysteine biosynthesis occur mainly in leaves (Saito 2000),

several enzymes involved in thiol metabolism are active in

developing soybean seeds (Sexton and Shibles 1999;

Chronis and Krishnan 2003, 2004; Phartiyal et al. 2006,

2008). Cysteine is the metabolic precursor for cellular

components containing reduced sulfur, including methio-

nine, glutathione, homoglutathione, iron–sulfur clusters,

vitamin cofactors like biotin and thiamin, and multiple

secondary metabolites (Hell and Hillebrand 2001). Typi-

cally, cysteine and methionine in proteins account for

about 80% of the organic sulfur found in plants with the

rest present as either free amino acids or as low molecular

weight thiols, such as glutathione or homoglutathione

(Anderson 1990). In soybeans, homoglutathione acts as a

major storage form of reduced sulfur and anti-oxidant

(Matamoros et al. 1999). Since sulfur plays a vital role in

numerous metabolic pathways and impacts plant produc-

tivity and nutritional quality, a thorough understanding of

the biochemical pathways involved in thiol metabolism is
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crucial for metabolic engineering of enhanced cysteine/

methionine production in soybean.

The sulfur assimilation pathway in soybean

Interest in increasing the cysteine and methionine content

of soybean has led to studies of sulfur assimilation in this

crop. During vegetative growth, sulfur moves from older to

younger tissues in the form of sulfate (Sunarpi and

Anderson 1996). Under conditions of limited sulfur supply,

soybean pods act as sinks for sulfate. Grain growth triggers

the assimilation of sulfate and its incorporation into ho-

moglutathione (Sunarpi and Anderson 1997). The sulfur

assimilation pathway involves the uptake of sulfate from

the environment and its chemical reduction to sulfide

(Fig. 1a). Although these studies, combined with the

completion of G. max genome project (http://www.

phytozome.net/soybean.php; Schmutz et al. 2010), begin

to provide a better understanding of the sulfur assimilation

pathway in this crop, many aspects of sulfur assimilation in

soybean remain unexplored.

The most abundant environmental source of sulfur is

sulfate (SO4
2-), a chemically inert molecule. Utilizing this

essential nutrient requires the enzymatic conversion of

SO4
2- into a chemical species that is energetically favorable

to reduce. Sulfate reduction occurs within plastids

(Schmidt and Trebst 1969). This requires the uptake of

sulfate from the environment, transport into the vascular

system, and distribution to cells and subcellular compart-

ments throughout the plant using multiple tissue-specific

isoforms of sulfate transporters (Smith et al. 1995;

Takahashi et al. 2000; Kataoka et al. 2004; Rouached et al.

2009). Studies in model plants establish the importance of

this system, but to date there are no studies on sulfate

transporters from G. max.

Following uptake of sulfate, the first enzymatic reaction

in the sulfur assimilation pathway is the non-reductive

adenylation of SO4
2- catalyzed by ATP sulfurylase (ATPS)

to yield adenosine 50-phosphosulfate (APS) (Osslund et al.

1982), as follows:

ATPþ SO2�
4 $ APSþ PPi

Transfer of SO4
2- generates a high-energy phospho-

sulfate mixed anhydride bond, which drives the subsequent

metabolic steps in the pathway. Studies of the genomic

organization and biochemical activity of a soybean ATPS

reveal similar attributes to the enzyme from other plants

(Phartiyal et al. 2006). The isolated cDNA clone encoded a

predicted plastid-localized ATPS, which was shown to

function as a homodimer with steady-state kinetic

parameters similar to the corresponding enzyme isolated

from A. thaliana and Penicillium chrysogenum (Seubert

et al. 1983; Murillo and Leustek 1995). Southern blot

analysis of soybean genomic DNA probed with the ATPS

cDNA showed two to four genes encode ATPS isoforms in

this crop. This is consistent with the presence of multiple

genes encoding cytosolic and plastid/chloroplast forms, as

shown in Arabidopsis, Brassica juncea (Indian mustard),

and potato (Leustek et al. 1994; Klonus et al. 1994; Logan

et al. 1996; Heiss et al. 1999; Hatzfeld et al. 2000a).

Analysis of the soybean genome indicates the presence of

four ATPS isoforms (Table 1), only one of which has been

biochemically examined (Phartiyal et al. 2006). The

localization, developmental expression, and biochemical

functions of the different ATPS in soybean are unclear.

APS, the product of the first enzyme in the pathway, is a

substrate for two different enzymes––APS reductase

(APSR), which commits the sulfur in the compound to

further reduction (Suter et al. 2000), and APS kinase

(APSK), which phosphorylates APS to provide a sulfur

donor involved in the synthesis of glucosinolates and

flavonoids (Kopriva 2006). This branch point partitions

sulfur flux between two competing pathways (Mugford

et al. 2009), as described below.

Fig. 1 Overview of thiol metabolism in soybean. Each box
corresponds to the different components of thiol metabolism, as

follows: a sulfur assimilation; b cysteine biosynthesis; c glutathione/

homoglutathione biosynthesis. Metabolites are indicated in bold and

proteins in italics
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In the reductive assimilatory pathway, APSR catalyzes

the reduction of APS to sulfite (SO3
2-) and AMP, utilizing

glutathione as an electron donor (Setya et al. 1996; Bick

et al. 1998), as follows:

APSþ glutathione$ AMPþ SO2�
3

Like the bacterial version of the enzyme, the plant APSR

require a [4Fe-4S]2? cluster for activity and contain an

N-terminal reductase domain and a C-terminal glutaredoxin-

like domain (Setya et al. 1996; Gutierrez-Marcos et al.

1996; Kopriva et al. 2001). In soybean, expression of a

predicted chloroplast-localized isoform lacking the

predicted N-terminal plastidic targeting sequence yielded

a homodimeric enzyme that catalyzed the glutathione-

dependent reduction of APS to SO3
2- (Phartiyal et al. 2008).

Based on Southern blot analysis, soybean encodes at least

three APSR isoforms (Phartiyal et al. 2008). Sequence

analysis suggests the presence of three APSR isoforms in

soybean, only one of which has been functionally confirmed

(Phartiyal et al. 2008) (Table 1).

Metabolically, APSR is a predominant regulator of

sulfate flux through the sulfur assimilatory pathway in

plants (Tsakraklides et al. 2002; Vauclare et al. 2002), and

expression of APSR is responsive to changes in nutrient

demand (Phartiyal et al. 2008). Transcript levels of APSR

in soybean decrease significantly in the absence of nitrogen

and increase under sulfur-deprivation conditions. The

coordinated regulation of nitrogen and sulfur use is a

common feature in plants and provides a system to manage

nutrient levels in response to protein synthesis demands

(Reuveny et al. 1980; Brunold et al. 1987; Sunarpi and

Anderson 1996; Takahashi et al. 1997; Yamaguchi et al.

1999; Koprivova et al. 2000; Hawkesford 2000). Likewise,

expression of both ATPS and APSR undergo concomitant

changes in both gene expression and enzyme activity

across developmental stages (Phartiyal et al. 2006, 2008).

In general, demand on the sulfur assimilation pathway

appears greater in young leaf and seed tissues (Adams and

Rinne 1969; Sexton and Shibles 1999), as these are sites of

metabolic activity in the growing organism.

In the competing pathway, APSK phosphorylates APS

at the 30-ribose position to yield 30-phosphate-50-adenosine

phosphosulfate (PAPS) (Varin et al. 1997; Lee and Leustek

1998), as follows:

APSþ ATP$ PAPS þ ADP

PAPS provides a sulfur-donor for various sulfotrans-

ferases involved in the synthesis of plant hormones,

sulfolipids, flavonoids, and glucosinolates (Rouleau et al.

1999; Varin et al. 1997). To date, no biochemical data is

available on APSK from soybean, but the genome encodes

five APSK isoforms (Table 1). Biochemical studies of

APSK from Arabidopsis and P. chrysogenum show that

APS can bind to the enzyme forming an inhibitor complex

(MacRae and Segel 1999; Lillig et al. 2001); this renders

the enzyme more sensitive to intracellular APS concentrations

Table 1 Summary of putative ATPS, APSR, APSK, and SIR isoforms in the soybean genome

Gene identification number Isoform Protein length/MW (kDa) Predicted localization cDNA expression/enzyme

activity

Glyma10g38760 GmATPS1 465 aa/51 Plastidic Yes/yesa

Glyma20g28980 GmATPS2 467 aa/51 Plastidic ND/ND

Glyma13g06940 GmATPS3 488 aa/54 Plastidic ND/ND

Glyma19g05020 GmATPS4 553 aa/62 Plastidic ND/ND

Glyma11g05140 GmAPSK1 297 aa/32 Secretory ND/ND

Glyma05g22440 GmAPSK2 207 aa/23 Cytosolic ND/ND

Glyma16g04530 GmAPSK3 207 aa/23 Cytosolic ND/ND

Glyma19g28900 GmAPSK4 207 aa/23 Cytosolic ND/ND

Glyma17g17430 GmAPSK5 207 aa/23 Cytosolic ND/ND

Glyma09g00670 GmAPSR1 470 aa/52 Plastidic Yes/yesb

Glyma15g11540 GmAPSR2 472 aa/52 Plastidic ND/ND

Glyma07g39130 GmAPSR3 466 aa/52 Plastidic ND/ND

Glyma11g09890 GmSIR1 687 aa/77 Plastidic ND/ND

Glyma12g02200 GmSIR2 688 aa/77 Plastidic ND/ND

Molecular weight was calculated based on the complete amino acid sequence using Protparam (http://www.expasy.ch/tools/protparam.html).

Subcellular localization was analyzed using TargetP (http://www.cbs.dtu.dk/services/TargetP/). When a clear localization is not predicted, a ‘‘–’’

is shown. Confirmation of either cDNA expression or enzyme activity is noted, as follows: yes or ND not determined
a Phartiyal et al. 2006
b Phartiyal et al. 2008
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than either ATPS or APSR, which are not inhibited by this

compound. Functional analysis reveals multiple APSK

isoforms in Arabidopsis (Lee and Leustek 1998; Leustek

et al. 2000; Mugford et al. 2009). Interestingly, T-DNA

insertional knockout lines of APSK-1 and -2 in Arabidopsis

resulted in a dwarfed phenotype and a 450% increase in

cysteine content (Mugford et al. 2009), suggesting that

partitioning of sulfate flux between the reductive

assimilatory and APS phosphorylation pathways is

important for growth and development.

Sulfite reductase (SIR) catalyzes the final reaction in the

assimilation of sulfur by converting sulfite to sulfide, as

follows:

SO2�
3 þ 6 ferredoxinred $ S2� þ 6 ferredoxinox

The enzyme contains a siroheme and a [4Fe-4S] cluster

as the catalytically active redox centers and catalyzes the

six-electron reductions of sulfite using electrons donated

from ferredoxin (Yonekura-Sakakibara et al. 1998, 2000;

Nakayama et al. 2000; Hirasawa et al. 2004). Previously,

Chi-Ham et al. (2002) identified a DNA-compacting protein

in soybean as SIR based on N-terminal sequencing and UV/

Vis spectroscopy; however, the enzymatic activity of this

protein remains unconfirmed. In Arabidopsis and tobacco,

one and two genes, respectively, encode the enzyme (Bork

et al. 1998; Yonekura-Sakakibara et al. 1998). In soybean,

there appears to be two SIR isoforms (Table 1). No other

information on this enzyme in soybean is available.

Connecting sulfur to amino acids: cysteine biosynthesis

Cysteine biosynthesis provides the entry point for sulfur

into organic molecules containing thiol groups (Fig. 1b).

The two steps in cysteine biosynthesis involve the acety-

lation of serine by acetyl-CoA generating O-acetylserine

followed by b-replacement of the acetyl group in O-acet-

ylserine with sulfide, producing cysteine and acetate, as

follows:

SAT : serineþ acetyl-CoA$ O-acetylserineþ CoA

OASS : O-acetylserineþ S2� $ cysteineþ acetate

Serine acetyltransferase (SAT; also abbreviated as

SERAT in the gene nomenclature) catalyzes the first

reaction and O-acetylserine sulfhydrylase [OASS; also

known as O-acetylserine(thiol)lyase] performs the second

reaction. OASS is part of the b-substituted alanine synthase

(BSAS) family of enzymes, along with enzymes producing

b-cyanoalanine from cysteine and cyanide (Hatzfeld et al.

2000b). A recent report indicates that enzyme in BSAS

family is also capable of catalyzing the desulfuration of

cysteine into pyruvate, ammonia, and sulfide; this expands

the catalytic diversity of this enzyme family in plants

(Burandt et al. 2001; Alvarez et al. 2010).

Multiple experimental approaches indicate that SAT

catalyzes the limiting step in cysteine biosynthesis. Cal-

culated O-acetylserine concentration in various subcellular

compartments is well below the Km value for OASS under

sulfur sufficient conditions (Wirtz et al. 2004; Krueger

et al. 2009). Moreover, OASS activity in many plant spe-

cies exceeds that of SAT (Ruffet et al., 1995; Droux 2003;

Heeg et al. 2008). Consistently, transgenic overexpression

of SAT generally increases cysteine and glutathione con-

tent, but overexpression of OASS results in relatively small

changes in thiol levels (Reviewed in Sirko et al. 2004). The

effect of OASS overexpression on the production of thiol

compounds in tobacco was significant only when OAS was

additionally applied (Saito et al. 1994); however, increased

tolerance of transgenic plants overexpressing OASS in

stress conditions demonstrates that OASS activity also

becomes limited when demand for cysteine supply is high

(Noji et al. 2001; Dominguez-Solis et al. 2004).

In all plant species studied so far, small nuclear multi-

gene families encode SAT and OASS (Lunn et al. 1990;

Rolland et al. 1992; Ruffet et al. 1995; Noji et al. 1998;

Hesse et al. 1999; Droux 2003). For example, the Ara-

bidopsis genome contains five genes for SAT and eight

functional genes for OASS (Summarized in Watanabe et al.

2008a, b). Available genomic sequence data for other

species also predicts multiple isoforms for SAT and OASS,

suggesting that Arabidopsis represents a general situation

from algae to higher plants (Kopriva et al. 2009). Phylo-

genetic analysis of these enzymes using amino acid

sequences shows that a group of either SAT or OASS from

a species cluster together with those from different species,

possibly reflecting conserved targeting and function in

different compartments in the cell, as well as their evolu-

tionary origins (Hatzfeld et al. 2000b; Jost et al. 2000;

Kawashima et al. 2005; Watanabe et al. 2008b).

Studies in Arabidopsis suggest that the relative contri-

bution of specific SAT and OASS isoforms to metabolism

depends on organ type and growth conditions. The mito-

chondrial SAT isoform (SERAT2;2) contributes most of

the cellular SAT activity in Arabidopsis leaves, but the

cytosolic isoform (SERAT1;1) provides about half of SAT

activity in roots, as much as the mitochondrial SAT form

(Haas et al. 2008; Watanabe et al. 2008b). Intriguingly,

specific down-regulation of mitochondrial SAT using an

artificial microRNA resulted in severe growth retardation,

but no growth defect was observed in T-DNA insertional

RNA null mutant of the mitochondrial SAT (Watanabe

et al. 2008b; Krueger et al. 2009). Distinct growth condi-

tions (e.g., light regime and nutrient condition) used in

these two studies may account for the discrepancy in the

relative importance of cytosolic isoform and the growth
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phenotype observed in plants deficient in the mitochondrial

SAT (Haas et al. 2008; Watanabe et al. 2008b; Krueger

et al. 2009). Similarly, the differential impact on total

OASS activity and growth retardation incurred by defi-

ciency of specific isoforms was also reported for the major

Arabidopsis OASS isoforms found in the cytosol, plastid,

and mitochondria (i.e., BSAS1;1, BSAS2;1, and BSAS2;2,

respectively) (Heeg et al. 2008; Lopez-Martin et al. 2008;

Watanabe et al. 2008a). Despite some differences, these

studies demonstrate overlapping functions for the SAT and

OASS isoforms, and the transport of metabolites produced

from these enzymes between cellular compartments.

A central control feature of cysteine biosynthesis is

the formation of a macromolecular complex containing

both SAT and OASS. Historically, cysteine synthase

complex was coined to describe this multienzyme assem-

bly (Kredich et al. 1969); however, cysteine synthase is

also a common name for OASS (Masada et al. 1975). We

suggest that the complex formed by SAT and OASS be

termed the cysteine regulatory complex (CRC) (Yi et al.

2010), as it more accurately reflects the proposed biological

function of this protein assembly.

Multiple lines of evidence suggest a critical role for

formation of the CRC in plants. At the mRNA level, SAT

and OASS are constitutively expressed, although levels of

some isoforms increase under nutritional and environ-

mental stress conditions (Barroso et al. 1999; Hesse et al.

1999; Yamaguchi et al. 2000; Dominguez-Solis et al. 2001;

Kawashima et al. 2005). Moreover, the observation that

SAT and OASS expression does not show compensation at

either the mRNA or protein level in mutants, which lack

one or two isoforms, further supports that transcriptional

control plays a limited role in regulating expression of

cysteine synthesis (Haas et al. 2008; Heeg et al. 2008;

Watanabe et al. 2008a, b). Alternatively, interaction

between SAT and OASS, which is mediated by C-terminal

tail of SAT and active site pocket of OASS, appears to

provide an effective regulatory mechanism that readily

responds to cellular concentration of sulfide and O-acet-

ylserine (Bogdanova and Hell 1997; Hell and Hillebrand

2001; Bonner et al. 2005; Francois et al. 2006; Kumaran

and Jez 2007; Kumaran et al. 2009).

According to the model proposed by Hell and Hillebrand

(2001), SAT activity in the CRC increases while completely

blocking OASS activity when low O-acetylserine and high

sulfide concentration in the cell facilitates CRC formation

(Droux et al. 1998; Berkowitz et al. 2002; Droux 2003;

Wirtz et al. 2004). This model further predicts that accu-

mulation of O-acetylserine in the cell under sulfur-deficient

condition dissociates CRC into the components, to decrease

flux through SAT (Wirtz et al. 2004). High concentrations

of O-acetylserine and/or low levels of thiol compounds in

the cell are likely signals that induce high-affinity sulfate

transporter and restore the conditions favoring formation of

the CRC (Hirai et al. 2003; Hopkins et al. 2005). In addition

to increasing SAT activity, CRC formation can alleviate the

inhibitory effect of cysteine on SAT activity (Kumaran et al.

2009).

Cysteine biosynthesis in soybean

The soybean genome contains 8 putative SAT and 15

putative BSAS (OASS plus related enzymes) genes. In

phylogenetic trees constructed with a neighbor-joining

method, these putative SAT or BSAS isoforms in soybean

form distinct branches with the corresponding enzymes

from different species (Figs. 2, 3) (Saito et al. 1992, 1993;

Hell et al. 1994; Barroso et al. 1995; Noji et al. 1998;

Hatzfeld et al. 2000b; Jost et al. 2000; Yamaguchi et al.

2000; Lai et al. 2009). These groupings seem to reflect the

evolutionary origin and possible subcellular localization of

the predicted soybean proteins, as discussed for other

species (Hatzfeld et al. 2000b; Jost et al. 2000; Kawashima

et al. 2005; Watanabe et al. 2008b). The SAT phylogenetic

tree suggests grouping by subcellular localization (Fig. 2).

The presence of soybean pairs showing the highest

sequence similarity in these phylogenetic trees likely

reflects the recent whole genome duplication in soybean

(Shoemaker et al. 2006; Van et al. 2008; Gill et al. 2009).

Similar to the SAT isoforms, the cytosolic and organellar

BSASes with predominant OASS activity (BSAS1 and

BSAS2, respectively) form two different clades with pre-

dicted soybean proteins, separate from yet another clade

that includes BSAS3 with strong CAS activity (Hatzfeld

et al. 2000b; Lai et al. 2009) (Fig. 3). The presence of

multiple SAT and OASS isoforms suggests that different

forms are expressed at specific developmental stages or

under different environmental conditions to tailor cysteine

synthesis.

Among the putative SAT isoforms in soybean (Fig. 2;

Table 2), two SATs are functionally characterized and

demonstrate commonalities and differences in their

expression, biochemical properties, and regulation of

activity. A screen for soybean expressed sequence tags

(EST) showing sequence similarity to known SATs iden-

tified SSAT1 (GLYMA16G03080) and an interaction

screen isolated GmSerat2;1 (GLYMA18G08910) as a

substrate for a calcium-dependent protein kinase (CDPK)

(Chronis and Krishnan 2004; Liu et al. 2006). Although up-

regulation of SSAT1 during seed development and GmS-

erat2;1 under oxidative stress was reported, the expression

pattern of these isoforms over developmental stage and

under different growth conditions awaits further investi-

gation. SSAT1 lacks an N-terminal signal peptide and is

assumed to be localized in the cytosol, consistent with its
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grouping with cytosolic SAT isoforms, including ATS-

ERAT1;1 (Chronis and Krishnan 2004). Transient expres-

sion of GmSerat2;1 fused with green fluorescent protein

revealed its dual targeting to cytosol and plastid (Liu et al.

2006). ATSERAT2;1 is also found in both cytosol and

plastid in the later developmental stage, but is exclusively

targeted to the plastid in the earlier stage of Arabidopsis

(Noji et al. 1998).

Both characterized soybean SAT isoforms are sensitive

to feedback inhibition by cysteine but to varying degrees

(Chronis and Krishnan 2004; Liu et al. 2006). Nonetheless,

GmSerat2;1 lacking the N-terminal localization sequence

becomes insensitive to cysteine when it is phosphorylated

by CDPK at a site close to the C-terminus by CDPK (Liu

et al. 2006). The finding that full-length GmSerat2;1 does

not display similar phosphorylation-dependent sensitivity

to cysteine suggests that a combination of subcellular

localization and phosphorylation determines the effect of

feedback inhibition. In the case of SSAT1, which does not

have a putative CDPK-phosphorylation site at its C ter-

minus, CRC formation with OASS provides a similar

protecti on to SSAT1 against cysteine (Kumaran et al.

2009). Whereas none of five Arabidopsis SAT isoforms

contain a putative CDPK phosphorylation site, GmSerat2;1

and four other SAT isoforms in soybean carry potential

CDPK-dependent phosphorylation sites (B-X-X-S/T: where

B is a basic residue lysine or arginine, X is any residue, and

S/T is serine or threonine) near the C-terminus (Liu et al.

2006). Given that putative CDPK-phosphorylation sites are

also found near the C-terminus in the SAT from other

plants, including tobacco, sunflower, and poplar (Liu et al.

2006), it needs to be determined whether C-terminal

phosphorylation of SAT affects CRC formation and whe-

ther this post-translation modification is more widely used

to modulate feedback inhibition by cysteine.

Out of 15 putative BSAS isoforms present in the soybean

genome, biochemical activity for cysteine biosynthesis has

been shown for five isoforms isolated from two different

cultivars, Williams 82 and NN99-10 (Fig. 3; Table 3)

(Chronis and Krishnan 2003; Zhang et al. 2008b). A sub-

sequent study using a pair of cytosolic OASS and SSAT1

(cytosolic SAT in soybean) demonstrated that CRC formation

in soybean has a similar effect on the activity of SAT and

OASS, as observed when the corresponding proteins from

other plant species are used––an increase in SAT efficiency

and a complete loss of OASS activity in the complex (Droux

et al. 1998; Berkowitz et al. 2002; Droux 2003; Kumaran et al.

2009). The work also revealed that formation of the CRC can

prevent cysteine inhibition of SAT, possibly by sequestering

the C-terminus of SAT from the exposure to cysteine

(Kumaran and Jez 2007; Kumaran et al. 2009). When bound

to SAT, cysteine contacts amino acids in the C-terminal

region, which is located close to the sequence determinants of

OASS interaction (Inoue et al. 1999; Olsen et al. 2004).

Fig. 2 Evolutionary relationships of SAT isoforms in soybean and

Arabidopsis. Phylogenetic analyses were conducted in MEGA4 using

the neighbor-joining method (Saitou and Nei 1987; Tamura et al.

2007). The percentage of replicate trees in which the associated taxa

clustered together in the bootstrap test (10,000 replicates) are shown

next to the branches (Felsenstein 1985). All positions containing gaps

and missing data were eliminated from the dataset. Prediction of

subcellular localization and abundance was based on the data

available for Arabidopsis genes. The isoforms with reported EST or

full-length cDNAs are underlined with thin and thick lines,

respectively. Functionally characterized soybean isoforms, GLY-

MA16G03080 (SSAT1) and GLYMA18G08910 (GmSerat2;1), are

indicated with asterisks (Chronis and Krishnan 2004; Liu et al. 2006).

Scale bar shows the distance between two proteins with 5% amino

acid sequence difference. Abbreviations for non-soybean SAT

correspond to the following accession numbers: ATSERAT1;

1––NP_200487.1; ATSERAT2;1––NP_175988.1; ATSERAT2;2––

NP_187918.1; ATSERAT3;1––NP_565421.1; and ATSERAT3;2––

NP_195289.3
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At the transcript level, BSAS isoforms show dynamic

but partially overlapping expression pattern depending on

organ types and developmental stages (Chronis and

Krishnan 2003; Zhang et al. 2008b). In this regard, overall

rate of cysteine synthesis at a certain time and location in

soybean may be determined by interplay among BSAS

isoforms expressed: some carry out cysteine biosynthesis

while the others are more attuned for b-cyanoalanine

synthesis and desulfuration using cysteine as substrate. A

discrepancy in OASS activity and mRNA expression level

of a BSAS isoform in wild soybean (Glycine soja) may be

related to differential expression patterns of multiple iso-

forms and/or difference in preferred biochemical activity

among BSAS isoforms (Zhang et al. 2008a). Although the

mRNA expression level of BSAS isoforms studied so far

largely corresponds to the total OASS activity during seed

development, it is not clear exactly how many BSAS iso-

form are expressed during seed development and what is

the in vivo function of the each enzyme expressed (Chronis

and Krishnan 2003; Zhang et al. 2008b). It would be

Fig. 3 Evolutionary relationships of BSAS isoforms in various plant

species and E. coli. Phylogenetic analyses were conducted in MEGA4

using the neighbor-joining method (Saitou and Nei 1987; Tamura et al.

2007). The percentage of replicate trees in which the associated taxa

clustered together in the bootstrap test (10,000 replicates) are shown

next to the branches (Felsenstein 1985). All positions containing gaps

and missing data were eliminated from the dataset. Prediction of

subcellular localization and abundance was based on the data available

for Arabidopsis genes. Isoforms with reported EST or full-length

cDNAs are underlined with thin and thick lines, respectively. The

soybean isoforms, whose cysteine synthase activity are biochemically

confirmed, are marked with an asterisk (Chronis and Krishnan 2003;

Zhang et al. 2008b). Scale bar shows the distance between two proteins

with 5% amino acid sequence difference. ATBSAS and SOBSAS are

BSAS proteins from Arabidopsis thaliana and Spinacia oleracea,

respectively. OSCAS is included in the tree because of its confirmed

activity as b-cyanoalanine synthase (Lai et al. 2009). ECCYSK and

ECCYSM are two proteins in E. coli for cysteine biosynthesis.

Abbreviations for non-soybean BSAS correspond to the follow-

ing accession numbers: ATBSAS1;1––NP_849386.1; ATBSAS2;1––

NP_181903.1; ATBSAS2;2––NP_851023.1; ATBSAS3;1––NP_

191703.1; ATBSAS4;1––NP_001078628.1; ATBSAS4;2––NP_

566243.1; ATBSAS4;3––NP_974843.1; ATBSAS5;1––NP_187013.1;

SOBSAS1;1––BAA01279.1; SOBSAS2;1––BAD08329.1; SOB-

SAS3;1––BAA07177.1; OsCAS––AAV48542.1; ECCYSK––

AP003008.1; and ECCYSM––AP003015.1
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informative to systematically determine which OASS and

SAT isoforms are expressed at different developmental

stages in various tissues, which biochemical reaction is

favored by a specific BSAS isoform, and whether there is a

preference in the interaction between the co-expressed

SAT and BSAS isoforms.

Synthesis of thiol peptides: glutathione

and homoglutathione

In plants, the thiol-containing tripeptide glutathione is a

major regulator of cellular redox state as well as an

essential contributor to processes such as the detoxification

Table 2 Summary of putative SAT isoforms in the soybean genome

Gene identification

number

Isoform Protein length/

MW (kDa)

Predicted or

confirmed localization

cDNA expression/enzyme

activity

Glyma16g03080 GmSERAT1;1 286 aa/30 Cytosolic Yes/yesa

Glyma07g06480 GmSERAT1;2 286 aa/30 Cytosolic Yes/ND

Glyma18g08910 GmSERAT2;1 391 aa/43 Cytosolic/plastidic Yes/yesb

Glyma08g43940 GmSERAT2;2 387 aa/42 – Yes/ND

Glyma02g46870 GmSERAT2;3 356 aa/39 – Yes/ND

Glyma14g010840 GmSERAT2;4 351 aa/38 – Yes/ND

Glyma16g22630 GmSERAT3;1 391 aa/44 Secretory Yes/ND

Glyma02g04770 GmSERAT3;2 385 aa/42 Cytosolic ND/ND

Isoform names are based on phylogenetic groupings, as in Fig. 2. Molecular weight was calculated based on the complete amino acid sequence

using Protparam (http://www.expasy.ch/tools/protparam.html). Experimentally confirmed subcellular localization is indicated in bold. Subcel-

lular localization was analyzed using TargetP (http://www.cbs.dtu.dk/services/TargetP/). When a clear localization is not predicted, a ‘‘–’’ is

shown. For GmSERAT3;1, the predicted subcellular localization based on the N-terminal sequence differs from that inferred by phylogenetic

analysis. Confirmation of either cDNA expression or enzyme activity is noted, as follows: yes or ND not determined
a Chronis and Krishnan 2004
b Liu et al. 2006

Table 3 Summary of putative BSAS isoforms in the soybean genome

Gene identification

number

Isoform Protein

length/MW (kDa)

Predicted

localization

cDNA expression/

enzyme activity

Glyma11g00810 GmBSAS1;1 325 aa/34 Cytosolic Yes/yesa

Glyma19g43150 GmBSAS1;2 325 aa/34 Cytosolic Yes/ND

Glyma03g40490 GmBSAS1;3 325 aa/34 Cytosolic Yes/yesb

Glyma20g28630 GmBSAS1;4 315 aa/33 Cytosolic Yes/ND

Glyma10g39320 GmBSAS1;5 286 aa/30 Cytosolic ND/ND

Glyma02g15640 GmBSAS2;1 394 aa/42 Plastidic Yes/ND

Glyma07g32790 GmBSAS2;2 389 aa/41 Plastidic Yes/yesb

Glyma09g39390 GmBSAS3;1 373 aa/40 – ND/ND

Glyma18g46920 GmBSAS3;2 372 aa/40 – Yes/yesb

Glyma15g41600 GmBSAS4;1 321 aa/34 Cytosolic Yes/ND

Glyma10g30140 GmBSAS4;2 324 aa/35 Cytosolic Yes/ND

Glyma20g37280 GmBSAS4;3 323 aa/35 Cytosolic Yes/ND

Glyma10g30130 GmBSAS4;4 323 aa/34 Cytosolic Yes/yesb

Glyma20g37290 GmBSAS4;5 295 aa/32 Cytosolic ND/ND

Glyma03g00900 GmBSAS5;1 320 aa/35 Plastidic ND/ND

Isoform names are based on phylogenetic groupings, as in Fig. 3. Molecular weight was calculated based on the complete amino acid sequence

using Protparam (http://www.expasy.ch/tools/protparam.html). Subcellular localization was analyzed using TargetP (http://www.cbs.

dtu.dk/services/TargetP/). When a clear localization is not predicted, a ‘‘–’’ is shown. Confirmation of either cDNA expression or enzyme

activity is noted, as follows: Yes or ND not determined
a Chronis and Krishnan 2003
b Zhang et al. 2008b
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of xenobiotics, the sequestration of heavy metals, the

storage of excess sulfur in the form of cysteine, and as a

substrate for APSR in sulfur assimilation (Setya et al. 1996;

Bick et al. 1998; Noctor and Foyer 1998; Mullineaux and

Rausch 2005; Meyer 2008; Rouhier et al. 2008). Much of

the work contributing to our understanding of the synthesis

and function of glutathione centers on the Brassicaseae, in

particular Arabidopsis and B. juncea; however, additional

studies completed in legumes, such as soybean, expand the

role of this peptide to species-specific analogs.

Glutathione synthesis requires the activities of two

dedicated ATP-dependent enzymes: glutamate-cysteine

ligase (GCL) and glutathione synthetase (GS) (Fig. 1c).

The first enzyme, GCL, utilizes L-glutamate and L-cysteine

to generate c-glutamylcysteine (Hell and Bergmann

1990; Jez et al. 2004). From this dipeptide and glycine,

GS, the second enzyme in the pathway, then synthesizes

glutathione (Jez and Cahoon 2004; Herrera et al. 2007), as

follows:

GCL : glutamateþ cysteineþ ATP$ c-glutamylcysteine

þ ADPþ Pi

GS : c-glutamylcysteineþ glycineþ ATP$ glutathione

þ ADPþ Pi

In Arabidopsis, a reporter gene fused to the 50-
untranslated region (UTR) indicates that GCL localizes to

the chloroplast, while both the chloroplast and the cytosol

contain GS (Wachter et al. 2005). Earlier fractionation

work in Pisum savitum also demonstrated the cytosolic

localization of GS (Klapheck et al. 1987). Although

transcript analysis and activity assays in bean (Phaseolus

vulgaris) nodules are consistent with those from

Arabidopsis, localization of GCL to both plastids and the

cytoplasm occurs in cowpea (Vigna unguiculata) nodules

(Moran et al. 2000).

The differing expression profiles of GS and GCL in

specific tissue types of various plants further complicate

efforts to understand the enzymes’ exact role. HPLC

analysis of thiols in leaves, roots, and nodules indicates that

c-glutamylcysteine is absent from broad bean (Vicia faba)

leaves, cowpea leaves, and all assayed legume roots, while

glutathione is absent or scarce in bean leaves and roots, as

well as mungbean (Vigna radiata) roots (Matamoros et al.

1999). Given the presence of glutathione in tissues lacking

c-glutamylcysteine, movement of metabolites between

tissue types is likely. Systematic analysis of GCL and GS

activities in different tissues of various legumes is neces-

sary to settle localization uncertainties. Such studies in

nodules from various legumes, with the exception of

mungbean, indicate the presence of both GCL and GS

activities. A detailed investigation of expression patterns in

the infected zone and the cortex of bean nodules reveal

comparable GS activity in both sectors and nearly twofold

higher GCL activity in the infected zone as compared to

the cortex (Matamoros et al. 1999). This may reflect either

additional bacterial synthesis of c-glutamylcysteine or

increased demand for c-glutamylcysteine resulting from

homoglutathione synthesis.

Although the regulation of glutathione synthesis in

legumes is unclear, in other plants a number of different

control mechanisms target GCL. In Arabidopsis, tran-

scription of GCL increases following exposure to either

heavy metal stress or jasmonic acid, but not to other oxi-

dative stresses that regulate the enzymatic activity of GCL

(Xiang and Oliver 1998; May et al. 1998). Changes in the

redox-state of GCL provide a post-translational mechanism

for regulation of activity (Jez et al. 2004; Hothorn et al.

2006; Hicks et al. 2007; Gromes et al. 2008). Oxidation/

reduction of disulfide bonds allows for the interconversion

of GCL between active homodimeric and less active

monomeric forms. The soybean genome contains two full-

length copies of the GCL gene that are 91% identical.

Localization tag analysis suggests that both of these tran-

scripts are targeted multiple locations (Table 4); activity

assays will likely be required to confirm this assessment in

soybean and other as-yet-untested legumes.

Glutathione is the primary redox-regulatory molecule in

eukaryotes, but it is not the only thiol-containing tripeptide

in plants. Grasses and rice produce hydroxymethylgluta-

thione, in which a serine replaces the terminal glycine,

following exposure to heavy metals (Klapheck et al. 1994).

Corn synthesizes an analog with a terminal glutamate and

horseradish generates a tripeptide with a glutamine in place

of the glycine following cadmium exposure (Meuwly et al.

1995; Kubota et al. 2000). Lastly, legumes substitute

b-alanine for glycine to produce homoglutathione

(Klapheck 1988; Skipsey et al. 2005).

As with glutathione, homoglutathione is synthesized in

two ATP-dependent steps beginning with GCL; however,

instead of GS, the second step requires homoglutathione

synthetase (hGS) to catalyze the formation of homogluta-

thione from c-glutamylcysteine and b-alanine (Moran et al.

2000). To date, homoglutathione is found in 14 different

legumes (pea, alfalfa, soybean, bean, mungbean, lentil,

chickpea, sweet pea, cowpea, Italian clover, red clover,

blue fenugreek, sweet clover, and runner bean); however,

two additional legumes (broad bean and lupine) appear to

lack this glutathione analog in all assayed tissue types

(Klapheck 1988; Matamoros et al. 1999). Additionally, two

species––cowpea and pea––possess it in their roots and

nodules, but not in their leaves.

Soybean produces more homoglutatione than glutathi-

one (Klapheck, 1988; Matamoros et al. 1999). Leaves and

seeds contain 50- to 200-fold and 135-fold more homog-

lutathione than glutathione, respectively. Nodules contain

972 H. Yi et al.

123



almost fourfold more homoglutathione than glutathione,

while the roots contain nearly 80-fold more homogluta-

thione. Physiologically, the exact role of homoglutathione

is unclear. One possibility is that homoglutathione takes the

place of glutathione as the dominant cellular redox-buffer;

however, this leads to questions about why and how the

transition from glutathione to homoglutathione took place.

It is known that in nodules, the site of nitrogen fixation,

homoglutathione is required for proper development

(Frendo et al. 2005). Ultimately, there remains a great deal

to discover about the interwoven roles of glutathione and

homoglutathione in legumes.

The genomes of legumes, including soybean, show

evidence for multiple rounds of genome duplication

(Shoemaker et al. 2006; Van et al. 2008; Gill et al. 2009).

Frendo et al. (2001) proposed that hGS arose from GS by

divergent evolution following a duplication event. The

distant phylogeny between legumes that produce homog-

lutathione makes it impossible to tell whether its synthesis

originated as a trait at the base of the legume phylogeny

and was subsequently lost in some species, or if the trait

evolved independently in a subset of species. Nevertheless,

examination of the soybean genome reveals the traces of

genome duplication as it contains two copies each for GS

and hGS (Table 4). Each pair of GS and hGS gene pairs

shares 87 and 93% sequence identity, respectively.

GS and hGS catalyze similar reactions and are related

by *70% sequence identity. GS uses glycine as the final

substrate in its reaction, but the active site of hGS accepts

b-alanine, a slightly longer molecule. Recent crystallo-

graphic studies of soybean hGS demonstrate the critical

role of an active site loop in determining substrate speci-

ficity between these enzymes (Fig. 4) (Galant et al. 2009).

The apical residues of this loop contact the substrate car-

boxyl-terminal; the identity of these amino acids alters the

size of the active site and determines specificity of the

enzyme. In GS, the apical residues are two alanines, but in

hGS, these residues are a leucine and a proline. Mutagen-

esis of the leucine-proline motif of soybean hGS to the

alanine-alanine sequence reduces the catalytic efficiency

with b-alanine by tenfold, while improving specificity for

glycine by nearly 1,000-fold (Galant et al. 2009).

Conclusions

Thiol metabolism is critical for plant growth, development,

and defense against a range of environmental stresses

Table 4 Summary of GCL, GS, and hGS isoforms in the soybean genome

Gene identification

number

Isoform Protein

length/MW (kDa)

Predicted

localization

cDNA expression/

enzyme activity

Glyma05g37850.1a GmGCL1a 504 aa/57 – Yes/ND

Glyma05g37850.2a GmGCL1b 500 aa/57 – Yes/ND

Glyma05g37850.3a GmGCL1c 504 aa/57 – Yes/ND

Glyma08g01750.1a GmGCL2a 535 aa/60 – Yes/ND

Glyma08g01750.2a GmGCL2b 535 aa/60 – Yes/ND

Glyma19g42610 GmGS1 527 aa/59 – ND/ND

Glyma19g42620 GmGS2 478 aa/54 Cytosolic ND/ND

Glyma03g40050 GmhGS1 547 aa/61 – Yes/ND

Glyma19g42600.1a GmhGS2a 547 aa/61 – Yes/yes

Glyma19g42600.2a GmhGS2b 436 aa/49 – ND/ND

Glyma19g42600.3a GmhGS2c 449 aa/50 – ND/ND

Molecular weight was calculated based on the complete amino acid sequence using Protparam (http://www.expasy.ch/tools/protparam.html).

Subcellular localization was analyzed using TargetP (http://www.cbs.dtu.dk/services/TargetP/). When a clear localization is not predicted, a ‘‘–’’

is shown. Confirmation of either cDNA expression or enzyme activity is noted, as follows: Yes or ND not determined
a Possible splice variants

Fig. 4 Comparison of glutathione (GSH) and homoglutathione

(hGSH) binding in the active sites of glutathione synthetase (GS) and

homoglutathione synthetase (hGS). The active site loop differences

determining substrate specificity of GS (Ala-Ala) and hGS (Leu-Pro)

are indicated by the arrows. Modified from Galant et al. 2009

From sulfur to homoglutathione: thiol metabolism in soybean 973

123

http://www.expasy.ch/tools/protparam.html
http://www.cbs.dtu.dk/services/TargetP/


(Rausch and Wachter 2005). Biochemical and physiologi-

cal studies predominantly in Arabidopsis provide funda-

mental insights on sulfur assimilation, transport, and

metabolism into a range of thiol-containing compounds.

Yet, building the framework for optimizing crop quality

and yield requires deeper understanding of sulfur demands,

the basic pathways of thiol metabolism, and the regulation

of these pathways in corresponding crops. Soybean is a

major crop in many nations, but thiol metabolism in this

crop is largely unexamined. Although the overall organi-

zation of sulfur metabolism in soybean, except the pro-

duction of homoglutathione, does not differ from other

plants, the whole genome duplication in soybean results in

a more complicated set of isoforms for each thiol metabolic

enzyme than observed in Arabidopsis. How this genetic

expansion relates to the contribution of various isoforms to

thiol metabolism in different organelles, tissues, and

developmental stages remains unanswered. In this regard,

analysis of the soybean genome will help define the protein

components of these pathways and associated regulatory

mechanisms. Do many of the biochemical regulatory sys-

tems found in plant thiol metabolism, including transport

systems, formation of protein complexes, and redox regu-

lation, also occur in soybean, or are they different (Yi et al.

2010)? Most of all, it is unclear if the possible matrix of

interaction partners between SAT and OASS isoforms

allows for additional fine control of thiol metabolism.

Likewise, phosphorylation of SAT in soybean (Liu et al.

2006) suggests connections between metabolic systems and

signal transduction pathways, but how these networks are

linked needs to be unraveled for its functional importance.

At the physiological level, soybean and other legumes also

raise the question of how thiol metabolism evolves to

diversify the production of sulfur-containing compounds

like homoglutathione. Ultimately, studies of amino acid

metabolism in soybean continue to provide new insights on

these biochemical pathways (Schroeder et al. 2010).
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Frendo P, Jiménez MJ, Mathieu C, Duret L, Gallesi D, Van de Sype

G, Hérouart D, Puppo A (2001) A Medicago truncatula
homoglutathione synthetase is derived from glutathione synthe-

tase by gene duplication. Plant Physiol 126:706–1715

Frendo P, Harrison J, Norman C, Hernández-Jiménez MJ, Van de
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